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Abstract Using an exhaustive database on academic publications in mathematics all over

the world, we study the patterns of productivity by mathematicians over the period

1984–2006. We uncover some surprising facts, such as the weakness of age related decline

in productivity and the relative symmetry of international movements, rejecting the pre-

sumption of a massive ‘‘brain drain’’ towards the US. We also analyze the determinants of

success by top US departments. In conformity with recent studies in other fields, we find

that selection effects are much stronger than local interaction effects: the best departments

are most successful in hiring the most promising mathematicians, but not necessarily at

stimulating positive externalities among them. Finally we analyze the impact of career

choices by mathematicians: mobility almost always pays, but early specialization does not.
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Introduction

In spite of a growing interest about the determinants of success in academic research, very

little is known about the cross-country and intertemporal patterns of productivity by

researchers and universities. Most studies focus only on one country (typically the US) and

very often look only at a small number of journals, a subset of universities and a limited

time period. For example Laband and Tollison (2000) compare the patterns and impact of

scientific collaboration in economics and biology, but they focus on the three top academic

journals in each field and look only at US universities. Oyer (2006) looks at the impact of

initial placement on the career of PhD economists but he only looks at the economists who

graduated in seven US economics departments. Similarly, when Agrawal and Goldfarb

(2008) look at the impact of Bitnet (an early version of Internet) on university research

output in engineering, they only look at US universities on the period 1981–1991. Even if

Kim et al. (2009) consider a longer time interval (1970–1999) in their study of the impact

of new information technologies, they look only at US universities. As suggested by Coupé

(2003), this might be due to a comprehensible ‘‘home bias’’ (‘‘US economists rank US

institutions,… Canadian economists restrict themselves to Canadian departments,…, Asian

economists focus on Asian departments’’ Coupé (2003) p 1309) but lack of data must also

play a role, and more precisely the difficulties that arise when trying to use worldwide data

sets on academic research outputs.

There is an important exception to this lack of structured and easy to use data: the

American Mathematical Society maintains an almost exhaustive database (Mathematical

Reviews) of publications in mathematical journals all over the world. This unique database1

provides a fantastic opportunity for studying the international and inter-temporal patterns

of academic research.

Mathematics is an interesting field to study in terms of knowledge production. Indeed,

this discipline is special in several ways: (1) there is relatively little equipment needed to

do research, unlike biology, physics and engineering or even economics and psychology,

(2) many papers are still written by single authors, partly defying the trend documented by

Wuchty et al. (2007); Jones (2010), (3) language barriers are perhaps less important than in

other fields, (4) (relatedly) elite mathematical research departments are relatively inter-

national, (5) math is less constrained by local interests than social sciences (i.e. Americans

may care most about the US economy), the humanities (i.e. the French may dispropor-

tionately care about French literature), and even engineering (i.e. Australians may dis-

proportionately care about geological engineering). Therefore, out of all fields, the

underlying structure of knowledge production in mathematics suggests that local effects

should be relatively unimportant. This means that, in addition to the availability of a rich

dataset, mathematics is useful to study because many of the constraints associated with

knowledge production are less binding than in other fields.

The quality of Mathematical Reviews data is apparent in several ways, two of which are

of particular relevance here. The first is that it is almost exhaustive: it covers the worldwide

mathematical production over the period studied here, 1984–2006. As explained below, we

focus our attention on a subset of mathematicians and journals, but our sample is

remarkably large: we are able to study the academic output of the 32574 mathematicians

who were active all over the world over the period 1984–2006. Second, our data set is

1 To our knowledge, Borjas and Doran (2012) are the only ones to use the same source of data. They study
the effects of the collapse of the Soviet Union and the influx of Soviet mathematicians after 1992 on the
productivity of their American counterparts.
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unique because it is remarkably well structured and easy to use: each institution and each

author can be identified without ambiguity, as well as the main and secondary fields of the

articles. This allows to identify precisely all the career decisions made by mathematicians:

choice of fields and co-authors, and more importantly mobility decisions. All movements

of a researcher from one university (and one country) to another can be perfectly tracked

down, at least for mathematicians who remain active (i.e. continue to publish), which is the

focus of our interest in this article. We are thus able to identify international and inter-

department movements of mathematicians at the aggregate level and also to assess the

impact of these movements on the individual productivity of researchers. Given that at

least some proportion of this mobility is due to exogenous reasons (other than offers made

to the best mathematicians by the most prestigious institutions), we can estimate the impact

of mobility on the future productivity of researchers. For the same reason, we can assess

the impact of career decisions (specialize or not, collaborate or not,...) on the success of a

mathematician. Even though mathematics clearly has its own specificities (we will come

back to these specificities later), we are convinced that our study can also be useful for

understanding the determinants of academic success in other fields.

The first part of the article provides detailed descriptive statistics on academic pro-

duction by mathematicians and uncovers some surprising facts. For example, contrary to a

widely held belief (among both scientists and lay people) the rate and quality of mathe-

matical production does not decline rapidly with age. For mathematicians who remain

scientifically active, productivity typically increases over the first 10 years, then remains

almost constant until the end of their career. However, there is a substantial attrition rate

(i.e. mathematicians who stop publishing) at all ages.2 Another surprising fact is how fast

the shares of mathematical production by different countries have changed in the recent

years. The US is still by far the largest country in terms of mathematical production, but

their share has declined from 50 % in 1984 to 34 % in 2006. While this phenomenon has

been documented elsewhere (see e.g. Hill et al. (2007)) the magnitude of the US decline in

mathematics is striking. It contrasts with other areas of science and engineering, where the

share of the US in world scientific production was found to decrease much more slowly.3

Similarly, the share of China in mathematics is rapidly increasing but it is still surprisingly

low as measured by our indicators, which put a strong weight on the most selective journals

(only 3.8 % in 2006). Another surprising fact is that international mobility after the PhD is

rather weak and it is much more symmetric than could be expected, both in terms of

numbers of mathematicians and in terms of ‘‘quality’’, as measured by the output of the

mathematicians who change countries.

In the second part of the article we perform a detailed statistical analysis of the factors

that can influence the scientific production of academic mathematicians. This allows to

analyze the determinants of individual productivity all along a mathematician’s career,

taking into account the (unobserved) intrinsic ‘‘talent’’ of each mathematician through

fixed effects. Location is of course among the important factors: the best mathematicians

are (by definition) in the best departments, but causality is not clear. Using the mobility of

a sizable subset of these mathematicians [as in Kim et al. (2009)] we can separate the

selection effects (hiring the most promising mathematicians) from interaction effects

2 For comparable studies in other fields see Levin and Stephan (1991) and Stephan (2008).
3 This is consistent with Annex Table 3 in Hill et al. (2007), where mathematics appears as an area where
the US share of world output has decreased the most from 1988 to 2003. Our data show a continuation of
this trend up to 2006.
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(stimulating positive spill-overs through exchange of expertise and feedback among

colleagues).

In conformity with other recent studies [e.g. Waldinger (2012)], we find that university

fixed effects (once researchers intrinsic quality is accounted for) are in general small, and

are not strongly correlated with the quality of the department. A few departments have a

strong positive impact on their members’ productivity but in prominent examples this is

largely associated with prestigious locally managed journals, which seem to publish rel-

atively many articles from ‘‘locals’’.

We also analyze the impact of other characteristics of departments on the outputs of

their members and find several interesting facts. First, we find that size does matter: large

departments are good for individual productivity. However this effect is largely due to

good hirings and becomes negligible when authors fixed effects are incorporated. Then, it

appears that having a specialized department has a negative impact on productivity when

no fixed effect is used, but this impact becomes positive with fixed effects. This tends to

indicate that a narrower scope lowers the quality of hiring, but that researchers fare better

in a department with colleagues close to their mathematical interests. Looking at US

universities, we find several interesting results. First, money does not seem to matter much:

even though the endowment per student has a strong positive impact when authors fixed

effects are not used, it has a negative impact (although not very significant) when these

fixed effects are incorporated. This negative effect becomes more significant when taking

into account whether the university is public or private. Second, the fact that a US uni-

versity is private has a small positive effect compared to public ones. There is also a sizable

positive effect of location on the East Coast relative to the Mid-West, the West Coast

standing in between the two.

Finally we analyze the impact of career decisions of individual researchers. We obtain

some additional interesting results on collaborations, mobility and specialization. Col-

laborations have a globally negative effect: the total output of mathematicians who have

more collaborating authors tends to be lower than the output of those who work separately.

However, the impact of collaborating with authors of a different specialty is positive:

interdisciplinary work (within mathematics) spurs productivity. Concerning mobility, we

find that each move increases future production. Regarding specialization, we provide

evidence that a high level of specialization is not a good strategy: it is correlated with a

lower future output, in particular for young researchers. This suggests that researchers

should be encouraged, especially at a younger age, to keep a broad range of interests.

The remainder of the paper is organized as follows. ‘‘Data description’’ section presents

the data. ‘‘Descriptive statistics’’ section gives some descriptive statistics (on the data).

‘‘Analysis of the scientific output of mathematicians’’ section analyzes the determinants of

scientific output of mathematicians. ‘‘Conclusion’’ section concludes.

Data description

The Mathematical Reviews database

The data come from the Mathematical Reviews database, which is maintained by the

American Mathematical Society. This database provides an almost exhaustive source of

information on publications in mathematics, covering almost all journals publishing

mathematics-related articles and many books and conference proceedings. It is remarkably

well structured and has three features that make it particularly well suited for statistical use.
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First, it provides a personal identification of each individual author, so that there is no

ambiguity even when two authors have the same name and initials. Second, each institution

is identified by a unique institution code. Last, each article is assigned one or more codes

describing its principal and secondary fields within mathematics using the ‘‘mathematical

sciences classification (M.S.C.)’’. This gives a precise description of an article’s area within

mathematics.

A small portion of the Mathematical Reviews database was used: since our focus was on

‘‘active’’ mathematicians, we selected the 98 journals with the highest impact factor among

those with a cited half-life above a threshold (according to the 2006 Journal Citation

Report in pure and applied mathematics), and compiled a list of all 129,242 articles

published in those journals between 1984 and 2006. Those 98 journals are the most visible

in fields of pure and applied mathematics, so that our data paints a reasonably accurate

picture of the best part of mathematical research. The precise number of journals con-

sidered here—98—is somewhat arbitrary and follows from the threshold applied for the

selection of the list of journals. However, the list is large enough to covers most mathe-

matics articles considered as important in their subfield. Moreover the choice of weights

attributed to journals (see below) is such that lower-impact journals have a much smaller

weight in the statistical analysis, so considering a longer list of journals would presumably

not change most of the results obtained below. We chose 1984 as the starting date because

Mathematical Review only records the affiliation of authors from this date.

We then compiled a list of all 32,574 mathematicians who published at least two articles

in those 98 journals over this period. For these mathematicians, we compiled a list of the

dates of their first and last publications in the whole database (not just the 98 journals in

our restricted list). We focused mainly, but not exclusively, on this smaller group of

‘‘active’’ mathematicians. The others, those with only one article in our list of 98 journals,

can be of different types: mathematicians publishing few papers, mathematics PhD who

have left the field, or academics of another field who have collaborated to a project

published in a mathematics journal, etc.

Impact

For a correct assessment of the activity of the mathematicians in our list, we did not use the

most standard impact factor data, which covers all scientific areas but is of limited rele-

vance for mathematics [Adler et al. (2009)]. Instead, the impact of each journal in the

mathematical community was evaluated by its 2007 Mathematical Citation Quotient

(MCQ), which is a kind of impact factor computed over five years by Mathematical

Reviews using their data. It is defined for each journal as the mean number of citations of

its articles, within 5 years of publication, in a relevant part of the mathematical literature.

This MCQ is highly correlated with the Impact Factor (IF) as computed by Thomson

Reuters, but it is less volatile and appears to be much more relevant for mathematical

journals for at least two reasons. One is that the 5-year window considered for the MCQ is

more significant than the 2-year window used for the impact factor, which is important for

mathematics where articles typically attract citations slowly and over a long period of time

(especially in some subfields, like number theory). The other is that the citations are

counted over a well-chosen and significant part of the mathematical literature, while the IF

is computed over a choice of journals which, in the area of mathematics, is more arbitrary

(for instance some relatively important journals are excluded). Those two differences mean

that the IF tends to generate larger biases than the MCQ between subfields of mathematics.

Note however, that our statistical treatment is designed to limit those biases.
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However the MCQ is only an indication of the ‘‘quality’’ of a journal as evaluated by

most mathematicians, rather than an absolute measure. In order to have a reasonable

assessment of the importance of an article, we decided to assign to each article a weight

equal to the product of its number of pages by the square of the MCQ of the journal where

it was published. In this way, longer articles have a (linearly) higher weight. This is chosen

in view of the general practice in mathematics: selective journals tend to be more

demanding towards long papers, and to accept more easily short notes. Not taking into

account the length of papers would give higher weight to authors who split their output in

many short contributions compared to those who prefer to make fewer, more important

papers. This would therefore bias the results. The square is justified by the desire to

emphasize good quality journals. Doing so, the weight of a page varies within our limited

list of journals in a ratio of approximately 1 to 100. Putting a much stronger weight on a

small number of highly selective journals, as we do by taking the square of the MCQ, also

reflects the confidence most mathematicians still have in the quality of peer review in the

most selective journals. This might not be the case in other areas, see for instance Ellison

(2011) for questions on the value attached to publications in top journals in economics, or

Ellison (2012) for an analysis of the (quite different) situation in computer science.

Our choice of weights puts a strong emphasis on a small number of very selective

journals, as can be seen from the list of journals in the appendix. This selectivity is in

conformity with the most widely shared quality assessments within the community of

mathematicians. However, we have checked that choosing a different weight on articles

does not change significantly the results of our study. There are probably some biases in the

way different fields are treated (for instance journals in applied mathematics tend to have a

lower MCQ than those in pure mathematics), but this is controlled for in our regressions by

using the field of research as a control variable.

A key point, however, is that the main results obtained here do not depend on the

precise indicator used. We give in Appendix 2 some results duplicating those presented in

the paper with different quality measures, replacing in particular the MCQ by the more

familiar Impact Factor (IF), which is more commonly used in natural sciences but seems

less well adapted to mathematics. In this appendix, the weight of each paper is the product

of its length (number of pages) by the mere IF of the journal where it is published (as

opposed to its square that we use in our other regressions). As the reader can check, our

main results do not change much if we adopt these quite different measures of output.

Smaller changes—like suppressing the square on the MCQ—have an even smaller impact

on the results.

To achieve a better understanding of these differences between fields within mathe-

matics, we used the Mathematical Subject Classification (M.S.C.) codes assigned to each

article by Mathematical Reviews. Since this classification is quite detailed, we grouped

different M.S.C. codes so as to obtain only 10 different areas. There are sizable differences

between the characteristics of articles in different fields of mathematics, as seen in

Table 12 in the Appendix 1. We also indicate in this table the number of authors and of

articles for each field, so as to give an idea of their relative numerical importance. It shows

simply that Probability and Statistics is the largest field while Analysis is second followed

by Partial Differential Equations, Differential Geometry, Numeric Methods and Physics.

Topology and Algebra come after and the smallest field is Dynamical Systems.

Finally, we compute a yearly ‘‘author impact’’, defined for each author and year as the

sum, over all articles published by this author in a given year, of the weight of each article

divided by the number of authors. In this way, the ‘‘output’’ corresponding to an article

with multiple authors is shared between them (equally).
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Any method for attributing ‘‘weights’’ to scientific articles and thus to researchers’

outputs has necessarily some degree of arbitrariness. There is a growing literature trying to

determine the best way to measure scientific output. For instance, Hirsch (2005) proposes

to measure the productivity of authors by the so-called h-index. This index is criticized by

Ellison (2010). Palacios-Huerta and Volij (2004) propose a new index based on citations

but different from the traditional Impact Factor. Combes and Linnemer (2003) propose a

ranking of journals in economics based on peer assessment of journal quality in addition to

citations instead of a purely objective measure using citation counts. Consistently with

Korevaar (1996), we believe that our way of weighting articles gives a result that is not too

far from the heuristic assessment of many mathematicians, but we have not, at this point,

tried to make this precise. It is probably not well adapted to other scientific areas.

Descriptive statistics

This section contains general data on the spread of mathematical research (as measured by

our indicators) in the world, on collaborations between regions and on mathematicians

moving from one country to another. We also consider evolutions over time. Location of

mathematicians can be identified thanks to their university affiliation as recorded in

publications. The list of coauthors and their affiliations as well as the evolution over time

of affiliations for a given author allowed us to identify international collaborations as well

as movements of mathematicians.

Countries and regions

The weight of different regions over time

In the following results, we present statistics for the ten countries having the biggest

mathematical production, which are, by alphabetical order, Canada (CA), France (FR),

Germany (GER), Israel (IL), Italy (IT), Japan (JAP), the People’s Republic of China

(PRC), Spain (SP), Britain (UK), and the United States (US). Russia (including the former

U.S.S.R. before 1989) does not appear among them because most Russian mathematicians

were publishing for a long time in domestic journals in Russian that had consequently low

impact factors because rarely read by the international community.

Table 1 shows the proportion of world output coming from different countries, over

time. Two striking features are the decrease in the share of the US and the increase in the

share of China, which however remains quite low.

Collaborations

As shown by Table 13 in the Appendix 1, the evolution over time of the proportion of

international collaborations is particularly impressive for Russia. Before the fall of the

Soviet Union in 1989, it was difficult for Russian mathematicians to collaborate with

foreign colleagues. After 1989, a large proportion of the most active Russian mathema-

ticians moved to other countries, which can account for the high proportion of collabo-

rations between mathematicians located in Russia and those in other countries.

Note that the proportion of collaborations in the US was initially quite low (25 %) but is

has increased markedly over the period.
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International mobility

Table 14 in the Appendix 1 shows the percentage of total number of years spent in

different countries by active mathematicians with a known first location in a given country.

The total in each row is the total number of years for which an affiliation is known for any

of the mathematicians in our database with first affiliation in the corresponding country,

and the total in each column is the total number of years spent in each country by

mathematicians with a known affiliation.

Table 14 contains a precise indication of the gain/loss of each country from the ‘‘brain-

drain’’, seen by comparing the total on a column (number of years spent in a country by

active mathematicians) to the total on the corresponding row (number of years spent by

active mathematicians with first career affiliation in the country). For instance the US

benefit from the flow (25,921 years spent by active mathematicians in the US, versus

22,882 years spent anywhere by mathematicians with location in the US) while Russia

loses (210 vs. 330 years).

The variable ‘‘first location’’ is defined as follows. We know the affiliation of

mathematicians for each year in which they have published a paper in one of the journals

in our list. However we also have, for each mathematician in our list, the date of their

first publication (in any journal, not necessarily those in our list). We define the ‘‘first

location’’ with the first affiliation that we know of, if it is within 3 years of the first

publication. As a consequence we know the first location of only 10,803 of the 32,437

‘‘active’’ mathematicians in our database. In particular we do not know the ‘‘first loca-

tion’’ of any mathematician with first publication before 1981, since our list of articles

starts in 1984.

Table 2 Mean impact of mathematicians with first location in/out of the country of their current location

Origin Country

CA FR GER IL IT PRC RUS SP UK US Total

Locals 4.9 12.4 8.2 8.9 5.6 4.1 6.3 4.7 6.6 8.9 8.0

Migrants 11.9 17.3 13.1 10.4 11.8 8.9 8.5 11.3 12.2 13.3 10.4

Average 7.7 13.1 8.9 9.3 6.6 5.1 6.4 5.3 8.1 9.4 8.5

Table 1 Share of countries in the world production, over time (in percentage points)

Years Country

CA FR GER IL IT JAP PRC SP UK US OTH

1984–1986 2.1 10.4 6.5 1.2 1.7 3.4 0.2 0.8 4.0 50.9 11.9

1987–1990 2.8 10.6 5.9 1.4 2.3 3.2 0.7 1.0 4.0 50.6 13.3

1991–1994 3.6 11.0 6.0 2.1 2.6 3.7 0.9 1.2 3.7 49.8 11.5

1995–1998 3.7 11.3 7.2 2.3 3.1 3.6 1.3 1.6 4.4 44.2 12.9

1999–2002 2.6 12.5 6.8 3.0 3.2 3.6 2.6 2.1 4.8 38.9 13.0

2003–2006 3.2 12.6 6.3 1.8 3.9 3.9 3.1 2.5 4.6 36.3 13.3
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In general, this ‘‘first location’’ indicates the country where mathematicians have

completed their PhD, or the country of their first or second year of post-doc. We only

consider here mathematicians for whom we know the affiliation of first publication.

A striking feature of Table 14 is the relatively small number of mathematicians who

have changed countries: the vast majority remains in the country of their first location. The

only exception is the high number of moves between Canada and the US, in both direc-

tions. However, as mentioned above, the sums of the rows and columns corresponding to

each country indicate the gain/loss from the flows, which are close to 10 % for countries

like the UK (loss) or the US (gain).

Table 15 in the Appendix 1 gives a hint on the attractivity of different regions. It shows

the mean impact of mathematicians working in a given region, depending on the region

where they had their first publication, which is typically the region where they did their

PhDs. Therefore these results must be interpreted with caution, given that apparent

‘‘migrations’’ may correspond to an authentic ‘‘brain drain’’ but also to a mere return to the

country of birth. A second reason for caution is that the numbers involved (e.g., migrations

from Germany to Japan) maybe quite small.

Table 2 has an interesting implication: in almost all regions, the mathematicians having

their first location outside their current region (‘‘migrants’’) have a better mean impact than

those with a local first location (‘‘locals’’). Here again the explanation can vary between

countries; in some cases it can be that the most active scientists tend do be those who went

abroad to do their PhD before coming back, while some other countries actually drain the

most active scientists.4

The proportion of ‘‘migrants’’, i.e. mathematicians having their first location in a dif-

ferent region than their current location, is shown in Table 3. These proportions are an

indication of how attractive a country is for foreign mathematicians, and of how open its

institutions are to mathematicians with a foreign PhD. Canada strikes out as particularly

open. The relatively high figure for China is certainly a measure of the number of math-

ematicians returning to China after a PhD, and therefore a first publication, in another

country. The small number for the US is also due to the fact that a lot of migration towards

the US is done before and not after the PhD.

Table 3 Proportion of mathe-
maticians residing in one country
and ‘‘coming from’’ (having had
their first publication in) another
country

Country Proportion

Canada 0.39

France 0.15

Germany 0.15

Israel 0.29

Italy 0.16

Japan 0.05

China 0.20

Spain 0.10

UK 0.26

US 0.12

4 The data in Table 15 and in Table 2 is more or less significant depending on the countries, as indicated in
the numbers of mathematicians concerned, as seen in Table 14 in Appendix 1 and in Table 3.
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We have not included Russia in this table because, as mentioned above, its

researchers could not publish before 1989 in the journals of our list. As a consequence

we cannot reliably identify their first affiliation, which skews the results for this

country.

Up to this point we have only considered the relationship between the first location of

mathematicians and their locations when they publish new articles. We now concentrate

on ‘‘permanent’’ moves between regions, defined as follows: mathematicians who have

spent at least 3 years in a given region, then moved to another region and spent at least

3 years there. This excludes short moves for short-term post-doctoral positions or sab-

baticals, but also changes of country immediately following the first publication.

Tables 16 and 17 in the Appendix 1 show these modified ‘‘migration’’ data and illustrate

three striking facts. First, the number of such ‘‘permanent’’ moves between countries is

small (see Table 16). Second, the numbers of ‘‘permanent’’ moves between most couples

of countries are remarkably symmetric. Third, the ‘‘quality’’ of those moves, as measured

by the mean impact of the mathematicians moving between countries, is also remarkably

symmetric as shown in Table 17 in the Appendix 1. Our data tends to indicate that the

‘‘brain-drain’’ phenomenon happens mostly for young researchers who move before or

after their PhD or after a few years of post-doc. Incidentally, this finding suggests that

investing a lot in PhD programs attended in large part by foreigners, like the US does,

might turn out to be a very good idea, given the fact that a large proportion of these

foreign students does not return to their country of origin.

Table 4 Percentage shares of the world output over time, top 20 departments

University Rank Share of impact 1984–1988 1989–1994 1995–2000 2001–2006

Princeton 1 1.80 2.15 1.96 1.61 1.70

Paris 11 (FR) 2 1.73 1.73 2.25 1.56 1.50

MIT 3 1.58 1.94 1.94 1.44 1.30

NYU 4 1.44 1.63 2.05 1.49 0.89

Berkeley 5 1.39 1.80 1.44 1.34 1.21

Harvard 6 1.27 1.94 1.18 1.38 0.94

Paris 6 (FR) 7 1.27 1.27 1.26 1.42 1.14

Chicago 8 1.09 1.23 1.06 1.07 1.08

UCLA 9 0.97 1.26 1.30 0.75 0.79

Stanford 10 0.93 0.99 1.16 0.83 0.84

Michigan 11 0.93 0.64 0.90 1.18 0.85

Rutgers 12 0.92 1.09 1.08 1.04 0.63

Purdue 13 0.91 1.53 1.08 0.75 0.64

Minnesota 14 0.86 0.87 1.24 0.68 0.75

Maryland 15 0.85 1.26 1.06 0.84 0.53

IAS Princeton 16 0.79 0.89 0.82 0.89 0.63

Toronto 17 0.77 0.46 0.88 0.82 0.79

Ohio State 18 0.75 0.75 0.80 0.82 0.63

Columbia 19 0.72 1.15 0.83 0.62 0.54

Wisconsin 20 0.71 0.91 0.68 0.56 0.77
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Universities

General description

Table 4 shows the share of world output (measured by our indicator) for the top 20

departments (also ranked by this indicator), and its variation over time. It shows notable

changes in the ranking of departments, both upwards and downwards. Another feature is

that the production of mathematical literature, even when measured by our quite elitist

indicator, is not very concentrated. Indeed, the department ranked first produces only

1.8 % of the world total output (weighted by impact) over the whole period. Moreover this

concentration appears to decrease over time, since the share of the most active department

was 2.25 % in 1989–1994, but only 1.7 % in 2001–2006.

Table 18 in the Appendix 1 shows the size (yearly average number of active mathe-

maticians) and the share, in total output, of the top author, and then the top 5 and top 10

authors (again weighted by impact). The share of the most productive author typically

varies between 5 and 15 %, while the share of the top 10 authors varies between 23 and

70 %, depending on the size of the department.

Table 5 shows the top 20 departments by total output, ranked now in terms of the

average output of their researchers (among departments with a total output of at least 5,000

weighted pages over the period, so as to eliminate very small departments). There is a large

difference between the two rankings, since small departments with highly productive

researchers (like the Institute for Advanced Studies) have excellent rankings in terms of

average output but not in terms of total output. The top department by mean output is the

Table 5 Rank for total output
versus rank for mean output

Rank University Total impact Rank by mean Mean impact

1 Princeton 42,522 3 25.7

2 Paris 11 (FR) 40,800 6 20.1

3 MIT 37,408 13 16.1

4 NYU 34,136 7 19.3

5 Berkeley 32,770 27 12.0

6 Harvard 30,002 4 25.0

7 Paris 6 (FR) 29,931 36 11.4

8 Chicago 25,875 8 17.8

9 UCLA 22,835 23 13.4

10 Stanford 22,074 31 11.7

11 Michigan 21,931 51 10.1

12 Rutgers 21,724 40 11.1

13 Purdue 21,477 29 11.9

14 Minnesota 20,387 57 9.4

15 Maryland 20,122 39 11.2

16 IAS Princeton 18,592 2 33.2

17 Toronto 18,157 33 11.6

18 Ohio State 17,625 42 10.8

19 Columbia 16,987 14 15.8

20 Wisconsin 16,755 62 8.9
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I.H.E.S. (Institut des Hautes Etudes Scientifiques, Paris) , but it does not appear in the table

since it is not part of the top 20 departments by total output.

Where are the most active mathematicians?

Table 6 shows the ranking of the 30 top departments by total output, along with their size

(mean number of active authors) and average share (%) over the period of the top 100

authors by total output, and the share of those among the top 500 by total output. The table

shows relatively little concentration of the mathematicians with the highest output in the

top departments, indicating again the relatively high number of departments taking part in

top-level research. The last column shows the share of young mathematicians (those at

most 4 years after their first publication), it gives an indication of the concentration of

future active mathematicians (those which end up in our list) in the departments, and

therefore of the importance of departments as a breeding ground for future mathematicians.

Analysis of the scientific output of mathematicians

We now undertake a more elaborate analysis of the determinants of scientific ‘‘produc-

tivity’’ for mathematicians.

For such an analysis, we postulate that the output measure of mathematician i during

period t, denoted yit, follows a linear model :

yit ¼ ai þ huði;tÞ þ cf ði;tÞ þ dt þ bXit þ eit ð1Þ

Table 6 Share of total number
of years spent by very active
(resp. active, resp. young) math-
ematicians (mean over period of
study)

University Rank Size Share
top 100

Share
top 500

Share
young

Princeton 1 96.9 8.73 3.82 0.76

Paris 11 (FR) 2 105.5 4.23 3.21 0.64

MIT 3 123.2 3.04 2.59 0.96

NYU 4 102.5 4.83 2.34 0.61

Berkeley 5 146 2.11 2.56 0.9

Harvard 6 64.9 5.04 2.85 0.55

Paris 6 (FR) 7 143.1 2.01 1.51 0.77

Chicago 8 81.1 2.22 2.43 0.62

UCLA 9 93.8 3.36 1.24 0.47

Stanford 10 106.7 2.11 1.9 0.7

Michigan 11 111.8 0.11 1.74 0.69

Rutgers 12 104.2 2.01 1.74 0.39

Purdue 13 95.5 2.44 1.59 0.45

Minnesota 14 116.5 0.22 0.92 0.73

Maryland 15 95.6 2.49 1.65 0.37

IAS Princeton 16 33.2 2.39 1.28 0.22

Toronto 17 78.7 1.19 1.4 0.44

Ohio State 18 86 1.36 0.86 0.43

Columbia 19 57.2 2.49 1.42 0.38

Wisconsin 20 101.3 0.11 1.17 0.5
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where u(i, t) is the university of author i at year t, f(i, t) is the field of research of author i at

year t, dt is a period effect, Xit are time varying characteristics of author i (for example,

age, age squared, age cubed and number of coauthors) and ai is a fixed effect for author

i capturing the effect of all unobserved characteristics of the author (fixed over time) that

affect his or her productivity. Assuming that eit is mean independent of ai, hu(i,t), c
f(i,t), dt, Xit, we can identify all parameters using Ordinary Least Squares (OLS). For

inference, we use clustered standard errors at the level of each author.

A causality interpretation can be done, provided all right hand side variables in this

equation are exogenous. This means that the unobserved heterogeneity of authors that is

correlated with productivity and with some of the right hand side variables (like the

university or the number of coauthors) is fixed over time. This assumption would be invalid

if, for example, universities would hire mathematicians based on temporary and unob-

served shocks of productivity, therefore correlated with eit.

Our first strategy is based on the use of author fixed effects to account for the endo-

geneity of placement of mathematicians in departments. As no experimental framework is

possible in this area and we cannot really justify any natural experiment that would allocate

researchers randomly to academic departments, we believe that fixed effects is a good

strategy in such a reduced form estimation. In order to account for the possible correlation

between unobserved university quality and moving decisions, we also estimate a specifi-

cation where we add university fixed effects in hu(i,t). An alternative strategy, consisting in

estimating a fully structural model of hiring and moving decisions, is beyond the scope of

this paper. However, moving from one department to another is a costly decision that is not

likely to be subject to unexpected and temporary shocks in performance of authors such

Table 7 Effect of individual variables on mathematician’s output

Dependent variable
Author Impact

(1)
OLS

(2)
OLS

(3)
OLS

(4)
2SLS

(5)
2SLS

Explanatory variables

Nb. of coauthors -1.598***
(0.0705)

-1.224***
(0.0749)

-2.858***
(0.0957)

-4.653***
(0.778)

-3.930***
(0.633)

Nb. coauthors diff
specialty

2.768***
(0.307)

2.387***
(0.252)

1.741***
(0.272)

2.399***
(0.337)

5.090**
(2.449)

Nb. past moves 1.595***
(0.0675)

0.888***
(0.0597)

1.233***
(0.153)

1.259***
(0.121)

1.280***
(0.117)

Nb. of past author’s
fields

-0.483***
(0.108)

0.303***
(0.113)

-0.642***
(0.210)

-1.040***
(0.187)

-0.895***
(0.185)

Nb. of past sub-fields
(M.S.C. codes)

1.579***
(0.144)

1.084***
(0.108)

1.301***
(0.173)

1.527***
(0.127)

1.342***
(0.125)

Nb. of past coauthors -0.0212
(0.0339)

-0.159***
(0.0311)

-0.238***
(0.0431)

-0.125**
(0.0610)

-0.218***
(0.0556)

Author fixed effects No Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes

Field fixed effects Yes Yes Yes Yes Yes

University fixed effects No No Yes Yes Yes

R2 0.140 0.099 0.118

Observations 551,655 551,655 296,538 260,007 268,892

Number of authors 60,560 60,560 54,183 29,388 29,669
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that the correlation between performance and placement of authors is more likely to be due

to the long term performance level of researchers, something captured by the author fixed

effect in our specification. We thus consider that this fixed effect strategy is quite powerful

in controlling for the endogeneity of the department where mathematicians are enrolled.

The only sort of endogeneity that our empirical strategy cannot account for is when both

unobserved deviations from its mean of university quality and author productivity shocks

are correlated. This simultaneity bias would prevent us to identify the causal effect of

university characteristics on author performance but we do not believe that it is likely to be

an important problem. We will have to keep this caveat in mind when interpreting results

though.

With this specification, hu(i,t) can be interpreted as the effect of the university or

department on the output of individual i. This effect can be identified because mathema-

ticians move from departments to departments and thus u(i, t) is not fixed over time.

Therefore hu identifies the average effect of university u on mathematicians who have been

affiliated to that university in year t: by definition of the indicator u(i, t), they are such that

u(i, t) = u. Similarly c f(i,t) can be identified because not all authors publish always in the

same field and thus variations at the individual level of fields of publication allow the

identification of ‘‘field effects’’ in addition to individual effects. One alternative model

consists of assuming that there is no unobserved heterogeneity across authors and thus that

ai = a for all i or that the deviations from the mean ai are mean independent of all other

right hand side variables of the previous equation. Then, one can add time invariant

variables in the Xit and still identify their effect.

We estimate several variants of the specification of Eq. (1) and first start with the

analysis of the determinants of individuals’ performance in terms of author impact. Then,

we consider in more detail the effect of departments qualities on researchers, then the

effect of specific characteristics of departments. Finally, we focus on results for US

departments and provide more detailed evidence on the life-cycle of authors performances.

Determinants of Individuals’ Impacts

We estimate Eq. (1) with several individual characteristics as explanatory variables Xit.

These explanatory variables are the number of co-authors, and the current number of co-

authors from different fields, some variables on authors’ personal histories like the total

number of past co-authors, the number of subfields (or mathematical subject classifications

(M.S.C. code)) in which they have published, and the number of institutions where they

have held a position. More precisely, we have defined the number of co-authors (at a given

time period) as simply the number of total coauthors who co-signed a publication with the

author (co-authorship with the same coauthor for several publications in a year is infre-

quent but counted). We also determine the main specialty of each author by the most

frequent M.S.C. code among his or her publications and define field fixed effects according

to this specialty. This also allows us to measure a second indicator of collaborations,

namely the number of co-authors having a different specialty. The number of past moves

between two departments is the number of times that the author has changed location since

his first publication (recall that changes of location are identified only when the author

publishes). The number of past M.S.C. codes of each author is the number of sub-fields

measured by M.S.C. codes of his articles in his past publication records and the number of

past co-authors is measured simply by compiling the list of all distinct co-authors from the

list of past articles published that are co-authored.
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Column (1) of Table 7 estimates Eq. (1) by OLS with the author impact as dependent

variable but without author or university fixed effects5. In column (2), we add author fixed

effects as unobserved heterogeneity on authors research quality may be correlated with

several right hand side variables and bias the coefficients estimates. Then, in column (3),

we also add university fixed effects because unobserved university specific effects may

affect the performance of researchers and be correlated with their co-authorship and other

right hand side variables. Remark that the sample size drops when we have both author and

university fixed effects, mostly because we need both authors moving universities and

varying right hand side variables in order to identify those coefficients. Finally, in columns

(4) and then (5) we keep the author and university fixed effects but also instrument first the

number of coauthors (in column (4)) and then both the number of coauthors and the

number of coauthors in different specialties [in column (5)] with the same variables lagged

twice in order to avoid some simultaneity bias in the change in the number of coauthor and

the change in the author impact.

A remarkable finding in Table 7 is that the current number of co-authors has a negative

impact,6 with or without author fixed effects, but also with university fixed effects or when

we account for some possible simultaneity bias by instrumenting the number of coauthors

by its lagged value. This suggests that generally speaking, collaboration does not spur

productivity: the output of a group of researchers, measured in terms of weighted pages

published, is lower than it would have been if each of them had worked separately.

Moreover, the comparison of coefficient estimates in column (3) and (4) shows that in-

strumenting the number of coauthors reduces the absolute value of the negative effect on

author impact, showing that time varying unobserved factors increasing author impact are

negatively correlated with the current number of coauthors.

However, the number of past co-authors with different specialties has a positive impact.

This is true independently of whether we account for unobserved author and university

fixed effects. Moreover, the number of co-authors from different fields also has a positive

impact when instrumented by its lagged value [column (5) of Table (7)]. One interpretation

is that collaboration with colleagues with a closely related competence is detrimental to

total impact per author, but collaborating with mathematicians from a different main field

is useful. It is remarkable that the coefficient of the number of coauthors from different

fields more than doubles when it is instrumented by its lagged value. It shows that the

simultaneity of author impact and the number of coauthors from different specialties is

present. Actually, the unobserved time varying factors that increase the author impact are

negatively correlated with the number of coauthors from different fields. Having published

in the past in different fields or in different sub-subfields has opposite effects (except when

we include author fixed effects but no university fixed effects). However, the overall effect

is positive, meaning that the variety of sub-fields of publications in mathematics has a

positive effect provided it stays within an identified field of mathematics. The number of

past institutions is also clearly positive [coefficient of the number of past moves in Table

(7)], which is consistent with our previous observations on the number of past subfields and

of past co-authors: having been exposed to a wider spectrum of mathematical ideas has a

positive effect on mathematical output.

5 In all tables, *** means that the coefficient estimate is significantly different from zero at 1 percent level,
** at 5 percent and * at 10 percent.
6 Recall that in our individual output measure, the impact of each paper is shared between the authors.
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Effects of departments on individuals

Then, an interesting question is the impact of location on mathematicians’ output: how

important are departments for the scientific productivity of their researchers? In order to

study this question, we look into more details at the estimated values of the university fixed

effects estimated before but not shown. Again, we use the data on the yearly production of

authors as dependent variable. The coefficients of department dummies reflect the average

output of researchers belonging to those departments over the 1984–2006 period. As

authors are moving across departments, we can also control for author fixed effects and

separate the effect of the department itself from the average quality of the mathematicians

composing this department.

Table 8 shows the estimated mean effect of the 30 main mathematics departments (in

terms of total output on the period) on their researchers using regressions of author impact

on department dummies without author fixed effects (in column 1) and then with author

fixed effects in columns 2–4. Normalizing the constant so that the sum of the mean effect

of the 30 departments under consideration is zero, the university effects just measure the

‘‘quality’’ of the department. When introducing author fixed effects, column 2 is for the

whole sample period, while column 3 corresponds to the first period 1984–1994 and

column 4 to the second period 1995–2006, in order to study the possible time variation in

those effects.

Note that this analysis of the effect of departments on individuals, with fixed effects of

the authors, is possible because there are many moves between departments. On average,

each ‘‘active’’ mathematician in our base had 1.87 different locations over his lifetime,

although this varies largely between countries.

Table 8 suggests that, generally speaking, the competitive advantage of elite mathe-

matical departments does not seem to decrease between the first (before 1994) and the

second part (after 1995) of our sample period. This contrasts with the findings of Kim et al.

(2009) for economists [see also Agrawal and Goldfarb (2008)].

Table 8 also suggests that some elite departments have indeed a strong positive impact

on their researchers. For instance being at N.Y.U. has a strong (although not significant)

positive effect (13.17 weighted pages/year). However this effect becomes negative when

the journal published by N.Y.U. (Communications in Pure and Applied Mathematics or

CPAM) is taken out of the publications sample as shown in column 2 of Table 9.

The effect of local journals is also significant, albeit with a much smaller magnitude, for

Paris 11 (its fixed effect falls from 22.98 to 16.32 when the geographically closest journal,

Publications Mathématiques de l’I.H.E.S., is not considered). This does not necessarily mean

that referees and editors are more friendly to local authors, but might possibly be explained

simply by the fact that these authors are encouraged to publish in the local journal.

Note that removing a journal also has an effect on the fixed effect of departments with

no obvious relation to the journal. This can be explained by the fact that being in a given

department encourages mathematicians to submit their paper to some journals more than to

others.

Characteristics of departments

We now consider more specifically the effect of different variables characterizing the 30

most important departments.

Table 10 shows the influence of different variables on authors’ impact and number of

articles published after controlling for author fixed effects. The University specialization
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index is defined as the sum of the squares of the proportions of the scientific output of the

department in each field. It varies between 0 and 1, and is close to 1 for highly specialized

departments and small for general ones. It is defined based on the subfield (M.S.C., for

Mathematics Subject Classification, as determined by Mathematical Reviews). The ‘‘Sta-

bility’’ variable is defined as the proportion of their total active life that mathematicians at a

given department will spend there, so that it would be 1 for a department where everybody

spends his whole active life, from first to last publication. It is an (inverse) indicator of

mobility.

The first and second columns show the effect of the variables on the ‘‘impact’’ of

authors taking into account the fixed effects of authors, with (column 2) and without

(column 1) taking into account the fixed effect of the institution. Columns 3 and 4 are

similar but measure productivity by the number of pages published instead of the impact.

The coefficient of the variable ‘‘Stability’’ is not significant. The coefficient of the

department size is positive and significant: bigger departments attract better researchers

even after controlling for author fixed effects. The coefficient of the University special-

ization index is strongly positive on the impact of researchers, but not on the number of

articles published: specialized departments appear to stimulate the quality of the produc-

tion of their researchers, rather than the number of papers they write.

US departments

Table 11 shows the influence of some variables that are specific to the US: private vs.

public universities, East Coast or West Coast, endowment per student. It also introduces a

variable defined as Closeness which measures how ‘‘open’’ departments are, it is the mean

of the proportion of its members ‘‘scientific life’’ that they will spend in this department.

The effect of the endowment per student is remarkable. It is strongly positive without

authors fixed effects, meaning that rich universities can attract better researchers. However

it is negative (but not significantly) when authors fixed effects are taken into account. This

is rather counter-intuitive since a higher endowment could imply lower teaching loads and

therefore more time for research. A possible explanation is simply that, once researchers

have obtained a position in a well-endowed university, they have weaker incentives to

publish first-rate articles. A similar result was obtained in economics by Ellison (2010),

who finds that after they have received their tenure, the economists of top US departments

slow down their publications pace in top journals.

It is also interesting to note that the East Coast has a significant positive effect over the

Midwest (2 standard deviations). The West Coast stands in between.

Finally the effect of public universities is slightly negative but not significant. This

could be attributed to higher teaching loads than in private universities. The difference

becomes significant when taking into account the endowment per student, which is con-

centrated almost only on private universities.

The impact of age: variations between countries

It is often believed that the productivity of mathematicians declines rapidly with age. We

show here that this is not the case, but that there are important cross-country differences in

the life-cycle productivities of mathematicians. These differences might be explained by

features such as the ages at which long-term or permanent positions can be obtained, the

grant systems, and more generally the nature of the incentives given to scientists, as well as

the degree of mobility between institutions, and the variability of teaching loads. The
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following figure represents a cross-country comparison of the profiles of scientific pro-

ductivity of mathematicians as a function of their ‘‘age’’, defined as the number of years

that have elapsed since their first publication.

Figure 1 shows how ‘‘age’’—the number of years after the first publication – influ-

ences the production of mathematicians in different countries. Obviously, there are

important differences in the average scientific output of researchers between countries.

However the allocation of this output through time also varies strongly between coun-

tries. The graphs indicate that some countries are better than other at helping their

researchers to remain active. For instance, in Germany, the peak productivity is reached

at a younger age than in Britain or the United States, and decrease in production is then

steeper. However, the overall picture shows that there is much more variation of pro-

ductivity across countries than across ages of mathematicians within a country. We can

interpret this finding in terms of life cycle evolution of the mathematician’s productivity.

However there can also be cohort-effects as found by Oyer (2006). But the length of the

time period covered by our data allows us to be confident that the age effects that we

have identified are indeed present. A possibility remains that the younger cohorts

observed in the 2000s would not behave as their older cohorts during the same period

when they will grow older.

Conclusion

The analysis presented here has some interesting implications for individual researchers,

departments, or in terms of scientific policy.
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Fig. 1 Variation of productivity with age, selected countries
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Our results shed some light on the possibility for the academic community to detect

promising mathematicians from their current production. The main indicator of future

success for a young mathematician is obviously the quality of his current publications.

However, our results tend to indicate some less obvious criteria, which can be measured

over the first few years of activity, and are correlated with a higher future scientific output.

Among those, we can cite a wide spectrum of interests. The capability to collaborate with

colleagues having different mathematical interests is a good predictor of success. In other

words, a strong focus on one area, which is sometimes presented as a way for young

scientists to gain a head start, could be counter-productive in the longer term. The total

number of collaborations, on the other hand, has more complex implications. Having a

large number of past coauthors appears positively correlated to the output, but a large

number of current coauthors appears to have a negative impact, probably meaning that

increasing co-authorship is inefficient in the short run but has a positive effect in the

longer run.

Then, our results also suggest suitable policies or recommendations to improve a

mathematics department or mathematical research on a large scale.

For example, encouraging mobility appears to be a way to improve both the quality of a

department and the scientific output of its members. On the other hand, encouraging

members of a department to collaborate more does not appear to be efficient, except if the

collaboration is with colleagues from different areas. This suggests that reading groups or

seminars bringing together mathematicians with different specialties could be a way to

broaden their interests and to improve their output.

Concentration on some subfields has mixed effects: it appears to lower the output of the

department through the hiring of less productive mathematicians, but allows to get better

papers from mathematicians with a given talent.

Concerning the global mathematical research, again a high level of mobility seems to

have positive effects. By contrast, allocating large subsidies to some departments appears

to be useless: it may attract the more active researchers to the richer departments, but does

not increase their output when taking into account authors fixed effects.

An important question, for which we do not have a definite answer, is how important it

is to train young researchers in the most active departments. One problem here is that it is

difficult to distinguish the quality of the training from the intrinsic ‘‘talent’’ of

mathematicians.

Finally, an extension of our results to other scientific areas than mathematics would

probably be hazardous. There are many differences across sciences: for instance the

importance of funding is fundamentally different between experimental fields and the more

theoretical ones. It would be interesting to check to what extent our findings for mathe-

matics are also valid in other fields, but this would require the availability of an exhaustive

and easy-to-use data set on publications in other fields, comparable to Mathematical

Reviews for mathematics.

Appendix 1: additional tables

See Tables 8, 9, 10, 11, 12,13,14,15,16,17, 18, 19, 20, 21, 22, 23 and 24 .
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Table 8 Fixed effects of major departments

Variables (1) Author impact (2) Author impact (3) Author impact (4) Author impact

IAS Princeton 16.05***
(1.782)

-1.061
(4.847)

-1.194
(8.961)

-9.333
(7.363)

Princeton 10.72***
(1.066)

-5.216
(4.333)

-2.509
(8.647)

-7.118
(6.797)

Harvard 8.922***
(1.236)

-0.818
(4.816)

2.318
(9.373)

-17.97**
(7.290)

U Paris 11 6.030***
(0.982)

-8.928
(7.109)

5.648
(12.79)

-8.991
(11.05)

NYU 4.576***
(1.031)

7.692
(4.716)

16.00*
(8.833)

-9.464
(7.901)

U Chicago 2.713**
(1.125)

2.851
(4.724)

1.674
(9.000)

-7.482
(7.220)

MIT 0.510
(0.902)

-3.570
(4.476)

-3.369
(8.806)

-15.93**
(6.697)

Columbia 0.296
(1.300)

0.843
(5.730)

-2.620
(10.77)

-13.02
(8.782)

UC Berkeley -3.498***
(0.836)

-8.892**
(4.408)

-10.12
(8.815)

-15.67**
(6.976)

U Paris 6 -3.262***
(0.870)

-6.691
(7.158)

0.0252
(12.85)

-8.272
(11.75)

UCLA -1.423
(1.051)

-0.517
(5.077)

1.788
(9.944)

-8.791
(7.591)

Stanford -4.031***
(0.997)

-5.427
(4.684)

-2.757
(9.188)

-15.62**
(7.171)

U Michigan -4.579***
(0.961)

-11.04**
(4.594)

-17.80*
(9.333)

-16.59**
(6.919)

Rutgers -3.688***
(1.001)

-1.294
(5.270)

2.956
(10.12)

-9.720
(8.748)

Purdue -3.523***
(1.018)

0.862
(5.672)

11.04
(9.342)

-24.68**
(10.94)

U Minnesota -5.918***
(0.942)

-0.841
(4.903)

5.120
(9.166)

-6.019
(7.638)

U Maryland -4.042***
(1.033)

-3.216
(5.408)

-0.451
(9.438)

-4.440
(10.03)

U Toronto -4.372***
(1.101)

1.161
(5.793)

5.179
(11.73)

-6.598
(8.163)

Ohio State U -4.582***
(1.073)

-6.306
(5.446)

-10.32
(10.03)

-8.295
(8.518)

U Wisconsin -6.897***
(0.994)

0 0 0

Constant 27.26***
(1.758)

28.51***
(6.261)

34.82***
(10.41)

22.46**
(9.662)

Author fixed effects No Yes Yes Yes

R2 0.417 0.471 0.450

Observations 34,291 34,291 14,868 19,423

Period \1995 [1994
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Table 9 Fixed effects of a selection of major departments, with and without local journals removed

Variables (1) Author
impact

(2) Author
impact

(3) Author
impact

(4) Author
impact

(5) Author
impact

Princeton -1.697
(3.779)

-2.648
(3.694)

-6.465*
(3.519)

-3.700
(3.449)

-1.443
(3.793)

U Paris 11 -4.269
(7.844)

-4.370
(7.668)

2.553
(7.304)

-7.670
(7.159)

-5.237
(7.873)

NYU 12.61***
(4.655)

-3.225
(4.551)

12.56***
(4.335)

12.88***
(4.249)

12.60***
(4.672)

IAS Princeton 2.674
(5.145)

1.986
(5.029)

1.025
(4.790)

-3.113
(4.695)

3.282
(5.163)

Constant 31.62***
(7.895)

26.99***
(7.718)

30.93***
(7.352)

31.79***
(7.206)

30.81***
(7.924)

R2 0.013 0.012 0.013 0.016 0.013

Observations 19,547 19,547 19,547 19,547 19,547

Number of authors 7,373 7,373 7,373 7,373 7,373

Removed None CPAM Annals IHES E.N.S.

Table 10 Effect of individual and department variables on authors’ impacts and number of articles

Variables (1) Author impact (2) Author impact (3) Nb. articles (4) Nb. articles

Nb. of coauthors -4.051***
(0.122)

-4.024***
(0.121)

0.0296***
(0.00255)

0.0291***
(0.00254)

Age 0.551***
(0.0715)

0.573***
(0.0714)

0.0226***
(0.00163)

0.0219***
(0.00165)

Age2 -0.0245***
(0.00339)

-0.0253***
(0.00333)

-0.000802***
(8.27e-05)

-0.000803***
(8.21e-05)

Age3 0.000229***
(4.93e-05)

0.000231***
(4.86e-05)

7.65e-06***
(1.26e-06)

7.64e-06***
(1.24e-06)

Univ. specialization index 3.155***
(0.999)

3.075***
(0.945)

3.82e-05
(0.0272)

0.0150
(0.0281)

Size of University 0.0315***
(0.00767)

-0.0278**
(0.0140)

0.000724***
(0.000161)

0.00146***
(0.000303)

Stability 2.026
(1.899)

4.855***
(1.733)

0.0480
(0.0421)

0.0551
(0.0446)

Author fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Field fixed effects Yes Yes Yes Yes

University fixed effects No Yes No Yes

R2 0.011 0.020 0.005 0.008

Observations 138,707 138,707 138,707 138,707

Number of authors 30,266 30,266 30,266 30,266
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Table 11 The determinants of mathematicians’ scientific output, without/with fixed effects, US only

Variables (1) Author impact (2) Author impact (3) Author impact

Nb. of coauthors -5.967***
(0.234)

-4.530***
(0.256)

-4.524***
(0.254)

Age 1.286***
(0.103)

0.513***
(0.143)

0.482***
(0.143)

Age2 -0.0509***
(0.00502)

-0.0205***
(0.00659)

-0.0203***
(0.00656)

Age3 0.000514***
(6.71e-05)

0.000141
(9.24e-05)

0.000132
(9.23e-05)

University specialization index -0.651
(1.891)

4.010
(2.807)

2.043
(2.335)

Size of University 0.0993***
(0.0101)

0.0195
(0.0163)

-0.0321
(0.0282)

Closeness -26.26***
(3.574)

-3.308
(5.947)

3.965
(4.009)

Private University 4.511***
(0.717)

2.072*
(1.128)

Endowment per Student 4.615***
(1.276)

-2.256
(1.611)

East coast University 4.081***
(0.619)

1.708
(1.082)

West coast University 2.784***
(0.858)

0.215
(1.498)

Author fixed effects No Yes Yes

Year fixed effects Yes Yes Yes

Field fixed effects Yes Yes Yes

University fixed effects No No Yes

R2 0.127 0.431 0.436

Observations 52,599 52,599 52,599

Table 12 Comparative characteristics of articles in different fields

Field Authors/paper Pages/paper Mean weight # Authors # Articles

Algebra 1.98 23.73 31.34 2,463 8,454

Analysis 2.07 19.70 16.46 8,438 31,194

DynSys 2.32 23.61 22.65 1,420 4,798

GeomAlg 1.84 23.36 36.43 4,101 16,720

GeomDiff 1.99 22.69 28.72 5,814 23,544

Numeric 2.30 19.75 10.17 4,638 17,420

PDE 2.10 23.13 21.32 5,898 25,390

Physics 2.47 21.59 12.79 4,455 12,362

ProbaStat 2.13 18.37 8.16 1,0244 41,721

Topology 1.87 25.13 39.09 2,238 9,065

Scientometrics

123

Author's personal copy



Table 13 Proportions (in %) of international collaborations over time

Years Country

CA FR GER IL IT JAP PRC RUS SP UK US

1984–1986 62 51 47 57 39 29 65 22 33 48 25

1987–1990 58 50 54 66 40 36 58 25 39 52 26

1991–1994 60 50 54 62 48 31 51 55 36 53 28

1995–1998 58 49 54 61 44 36 49 72 38 54 32

1999–2002 67 47 57 63 46 41 39 76 42 56 37

2003–2006 64 51 58 64 45 48 51 79 43 60 37

Average 62 49 56 63 45 39 48 66 41 55 32

Table 14 Transition matrix of mathematicians: locations of the mathematicians who have started in a given
country

Country

of first

location

Country of current location

CA FR GER IL IT JAP OTH PRC RUS SP UK US Total

years

CA 66.9 1.8 0.6 1.6 0.2 4.3 0.1 0.9 1.2 22.5 2226

FR 0.6 90.0 1.1 0.2 0.6 0.2 2.3 1.0 0.6 3.4 5403

GER 1.0 1.6 81.4 0.5 0.1 5.2 0.2 0.0 2.7 7.2 5042

IL 3.3 0.8 0.2 68.7 2.3 0.1 2.3 22.2 1204

IT 0.2 2.6 1.0 91.6 2.0 0.3 0.5 1.8 2192

JAP 1.0 0.1 92.7 2.2 0.9 0.2 2.8 2020

OTH 0.8 2.3 2.2 0.1 0.4 0.1 83.9 0.8 0.1 1.3 8.0 12341

PRC 2.6 1.1 0.8 0.1 0.2 3.8 80.5 0.1 0.6 10.2 1914

RUS 2.1 0.6 2.1 1.2 7.0 61.2 9.4 16.4 330

SP 0.7 0.3 0.0 0.9 0.2 96.6 0.4 0.8 2349

UK 2.2 1.7 2.3 0.1 1.1 0.2 11.5 1.5 0.2 68.8 10.3 3618

US 2.2 1.0 0.9 1.0 0.8 0.2 6.8 0.7 0.0 0.5 1.6 84.3 22882

Total

years

2455 5701 4848 1173 2384 1971 13326 1930 210 2508 3371 25921 65798

Numbers in columns do not sum to 100, due to imbalance of flows across countries

Table 15 Mean impact of mathematicians depending on country of first location and current country

Country of
1st location

Country of current location

CA FR GER IL IT JAP OTH PRC RUS SP UK US Total

CA 4.9 2.2 18.2 8.9 3.2 4.1 0.5 12.0 2.5 6.1 5.3

FR 5.1 12.4 7.8 50.9 14.6 13.9 10.8 19.7 26.5 11.3 12.5

GER 17.1 24.8 8.2 8.0 34.1 9.3 6.1 128.3 11.2 16.2 9.3

IL 11.5 38.4 10.8 8.9 3.3 9.5 41.0 19.5 12.2

IT 18.0 8.5 4.9 5.6 4.5 11.0 2.1 7.1 5.7

JAP 14.8 3.5 10.9 6.2 0.2 17.1 14.5 10.9

OTH 5.8 13.1 8.9 2.7 8.4 6.2 5.1 4.4 16.3 7.4 14.1 6.1
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Table 16 Number of ‘‘permanent’’ moves from one country to another

From To

CA FR GER IL IT JAP OTH PRC RUS SP UK US Total

CA 0 9 5 5 3 1 38 10 1 2 16 140 230

FR 10 0 12 7 16 2 40 6 1 12 12 62 180

GER 13 37 0 2 10 13 115 5 3 1 48 114 361

IL 7 6 2 0 0 0 6 0 0 0 0 73 94

IT 3 10 5 0 0 0 19 2 0 1 6 26 72

JAP 0 2 12 0 1 0 7 5 0 0 1 18 46

OTH 35 82 100 3 18 9 0 53 8 8 65 315 696

PRC 12 5 4 0 5 2 34 0 0 0 12 43 117

RUS 2 12 14 6 5 0 28 0 0 2 17 49 135

SP 0 2 3 0 1 0 10 0 2 0 5 6 29

UK 12 18 13 1 7 1 67 14 2 3 0 91 229

US 114 65 90 88 40 23 319 42 7 17 85 0 890

Total 208 248 260 112 106 51 683 137 24 46 267 937 3,079

Table 15 continued

Country of
1st location

Country of current location

CA FR GER IL IT JAP OTH PRC RUS SP UK US Total

PRC 4.9 30.2 12.2 0.8 9.2 13.2 4.1 22.7 6.9 9.3 5.4

RUS 25.6 8.8 27.2 5.3 13.8 6.3 18.6 48.3 15.7

SP 12.1 1.6 0.8 0.6 31.5 4.7 0.9 9.0 4.7

UK 4.9 17.6 15.5 2.3 5.4 15.8 3.8 3.7 2.0 6.6 12.7 7.2

US 14.2 21.9 18.7 9.7 14.4 7.0 8.3 13.2 8.3 6.0 11.9 8.9 9.3

Total 7.7 13.1 8.9 9.3 6.6 10.9 5.7 5.1 6.4 5.3 8.1 9.4 8.5

Table 17 Mean impact over lifetime of mathematicians moving from one country to another

From To

CA FR GER IL IT JAP PRC RUS SP UK US

CA 4.9 9.6 6.5 2.6 12.4 21.3 4.6 4.2 3.2 6.3 9.1

FR 9.3 12.4 20.8 22.4 7.9 8.4 12.5 1.5 28.5 16.1 25.5

GER 23.3 15.4 8.2 13.0 9.2 17.5 5.3 3.7 4.8 12.0 16.7

IL 11.6 5.6 7.8 8.9 19.0

IT 4.7 9.9 13.1 5.6 11.6 1.7 10.6 14.5

JAP 2.4 10.6 16.6 10.9 9.3 8.3 26.8

PRC 4.2 21.2 9.6 8.4 0.6 13.2 3.2 9.3

RUS 0.6 14.3 10.0 3.2 3.3 6.3 21.3 9.1 19.1

SP 7.9 14.2 2.5 21.3 4.7 15.0 4.1

UK 9.0 12.7 15.6 40.9 12.2 21.3 11.1 1.7 7.4 6.6 15.9

US 14.2 26.9 18.8 15.7 17.4 9.4 16.1 9.7 11.3 15.0 8.9
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Table 18 Size and share of top
authors in top departments

University Rank Size Share
1st author

Share 5
authors

Share 10
authors

Princeton 1 96.9 5.9 19.5 30.3

Paris 11 (F) 2 105.5 11.8 25.1 36.2

MIT 3 123.2 11 24.1 34.2

NYU 4 102.5 6.2 19.8 29.1

Berkeley 5 146 4.1 14.6 23.4

Harvard 6 64.9 10 29.9 41.4

Paris 6 (F) 7 143.1 13.5 22 28.5

Chicago 8 81.1 7 21.4 31.8

UCLA 9 93.8 7.6 26.9 36.2

Stanford 10 106.7 6.1 21 34.3

Michigan 11 111.8 4.6 15.7 24.9

Rutgers 12 104.2 6 22.2 33.2

Purdue 13 95.5 5.9 22.6 35.9

Minnesota 14 116.5 5.4 18.3 30.3

Maryland 15 95.6 8.3 28.5 42.4

IAS Princeton 16 33.2 12 30.9 41

Toronto 17 78.7 14.5 29.8 42.2

Ohio State 18 86 7 19.5 33.1

Columbia 19 57.2 8.9 26.9 42.4

Wisconsin 20 101.3 5.9 20.4 33.5

Cornell 21 106.5 5.6 22.9 35.2

Oxford (UK) 22 80.6 8.5 28.9 40.5

Paris 7 (F) 23 49.5 6.4 23.8 38.2

Caltech 24 54.2 10 31.5 44.8

SUNY Stony Brook 25 46.1 12.2 42.6 61.3

Polytechnique (F) 26 56 7.6 19 31.3

UC San Diego 27 69.9 5.2 19.7 33.9

Hebrew U (IL) 28 64.3 10.2 35.9 51

Cambridge (UK) 29 79.8 6.2 20.7 31.8

Illinois at Urbana 30 99.2 4.4 17.4 28.3

Table 19 Fixed effects of major departments, by IF

Variables (1)
Author impact (IF)

(2)
Author impact (IF)

(3)
Author impact (IF)

(4)
Author impact (IF)

Princeton 13.67***
(0.670)

7.531
(7.304)

3.684
(13.62)

20.07
(13.56)

U Paris 11 5.701***
(0.650)

13.92*
(7.871)

4.931
(15.58)

26.36*
(13.72)

MIT 6.617***
(0.576)

4.792
(7.350)

2.249
(13.63)

11.01
(13.49)

NYU 15.84***
(0.660)

18.93***
(7.289)

19.61
(13.51)

23.61*
(13.64)

UC Berkeley 5.397***
(0.550)

3.025
(7.395)

-3.340
(13.73)

12.28
(13.67)

Scientometrics

123

Author's personal copy



Table 19 continued

Variables (1)
Author impact (IF)

(2)
Author impact (IF)

(3)
Author impact (IF)

(4)
Author impact (IF)

U Paris 6 3.412***
(0.581)

7.427
(7.975)

-16.64
(15.79)

26.11*
(13.82)

U Chicago 5.509***
(0.722)

12.08
(7.604)

10.62
(14.36)

19.11
(13.75)

UCLA 2.864***
(0.698)

9.197
(7.539)

9.018
(13.70)

23.63*
(13.98)

Stanford 6.347***
(0.632)

4.958
(7.469)

7.026
(14.28)

9.300
(13.76)

U Michigan -0.628
(0.629)

0.414
(7.541)

-13.17
(14.24)

10.21
(13.82)

Rutgers -0.0867
(0.669)

7.690
(7.661)

13.03
(13.86)

17.53
(14.58)

U Maryland -0.0430
(0.703)

1.027
(7.858)

9.034
(14.34)

1.723
(15.27)

IAS Princeton -4.898***
(1.099)

9.959
(7.602)

13.38
(14.17)

14.91
(13.77)

Cornell 0.633
(0.652)

3.751
(7.647)

6.776
(13.94)

10.52
(14.23)

Oxford -3.465***
(0.731)

2.533
(8.310)

8.221
(16.62)

10.56
(14.55)

SUNY Stony Brook -6.415***
(0.998)

9.447
(8.510)

12.18
(14.84)

11.78
(17.14)

Ecole polytechnique -4.857***
(0.884)

7.034
(8.061)

-3.952
(16.21)

16.54
(14.12)

Hebrew U -5.928***
(0.873)

2.925
(8.092)

7.736
(14.97)

-9.118
(14.61)

Cambridge -2.631***
(0.726)

8.007
(8.262)

19.05
(16.39)

15.30
(14.45)

U Illinois -4.731***
(0.668)

6.318
(8.179)

8.410
(15.92)

9.860
(14.33)

U Toulouse 3 -8.895***
(0.900)

9.199
(9.021)

19.88
(19.91)

20.90
(14.83)

ENS Paris -6.966***
(1.011)

8.520
(8.106)

-13.18
(16.60)

21.69
(13.74)

ETH Zürich -4.842***
(0.864)

1.472
(6.808)

12.70
(10.99)

8.289
(13.62)

Tel Aviv U -4.911***
(0.732)

4.277
(7.952)

8.840
(15.18)

9.269
(14.16)

U Bonn -6.695***
(0.884)

0
(0)

0
(0)

0
(0)

Constant 13.34***
(0.797)

25.31***
(8.240)

25.22*
(14.78)

15.01
(14.54)

Author fixed effects No Yes Yes Yes

R2 0.040 0.046 0.045

Observations 208683 21597 8913 12684

Number of authors 8159 4064 5613

Period \1995 [1994
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Table 20 Fixed effects of a selection of major departments, with some journals removed, by IF

Variables (1)
Author

impact (IF)

(2)
Author

impact (IF)

(3)
Author

impact (IF)

(4)
Author

impact (IF)

(5)
Author

impact (IF)

Princeton 7.531
(7.304)

1.605
(6.864)

5.832
(6.665)

9.125
(7.306)

8.075
(7.315)

U Paris 11 13.92*
(7.871)

11.90
(7.397)

15.13**
(7.182)

12.76
(7.874)

14.07*
(7.883)

NYU 18.93***
(7.289)

-1.008
(6.850)

21.42***
(6.651)

20.05***
(7.291)

19.33***
(7.300)

IAS Princeton 9.959
(7.602)

4.070
(7.143)

11.61*
(6.936)

10.28
(7.604)

10.73
(7.613)

Ecole polytechnique 7.034
(8.061)

3.685
(7.575)

8.475
(7.355)

6.849
(8.063)

6.047
(8.072)

ENS Paris 8.520
(8.106)

9.214
(7.617)

9.873
(7.396)

8.782
(8.108)

9.009
(8.117)

Constant 25.31***
(8.240)

25.03***
(7.743)

22.06***
(7.519)

24.63***
(8.243)

24.21***
(8.252)

R2 0.040 0.040 0.043 0.039 0.039

Observations 21597 21597 21597 21597 21597

Number of authors 8159 8159 8159 8159 8159

Removed None CPAM Annals IHES E.N.S.

Table 21 Impact, effect of various variables, based on IF

Dependent variable (1)
Author impact

(2)
Author impact

(3)
Nb. articles

(4)
Nb. articles

Coaut -6.462***
(0.0906)

-5.945***
(0.0842)

0.0314***
(0.00275)

0.0294***
(0.00255)

Age 0.762***
(0.0408)

0.493***
(0.0508)

0.0306***
(0.00156)

0.0228***
(0.00163)

Age2 -0.0330***
(0.00207)

-0.0201***
(0.00240)

-0.00123***
(9.08e-05)

-0.000868***
(8.27e-05)

Age3 0.000356***
(2.90e-05)

0.000175***
(3.55e-05)

1.32e-05***
(1.41e-06)

8.37e-06***
(1.26e-06)

University specialization
Index_univ

-4.301***
(0.585)

3.607***
(0.741)

-0.0419*
(0.0227)

0.110***
(0.0273)

Size University 0.106***
(0.00378)

0.0416***
(0.00410)

0.00260***
(0.000139)

0.00201***
(0.000133)

Stability -7.395***
(0.860)

1.232
(1.234)

0.0148
(0.0349)

0.0244
(0.0422)

Constant 18.84***
(1.098)

24.76***
(1.232)

0.950***
(0.0340)

1.200***
(0.0445)

Author fixed effects No Yes No Yes

Year fixed effects Yes Yes Yes Yes

Field fixed effects Yes Yes Yes Yes

R2 0.093 0.041 0.028 0.008

Observations 138,707 138,707 138,707 138,707

Number of authors 30,266 30,266
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Table 22 The determinants of
mathematicians’ scientific output,
without/with fixed effects, US
only

Variables (1)
Author impact

(2)
Author impact

Nb. of coauthors -8.131***
(0.221)

-7.432***
(0.218)

Age 1.359***
(0.0926)

0.642***
(0.124)

Age2 -0.0540***
(0.00444)

-0.0250***
(0.00567)

Age3 0.000546***
(5.83e-05)

0.000179**
(7.80e-05)

University specialization index 4.850
(5.942)

5.805
(6.119)

Size of University 0.0738***
(0.00663)

0.0621***
(0.0102)

Closeness -27.76***
(5.010)

-3.871
(7.232)

Private University 3.176***
(0.511)

1.824**
(0.838)

Endowment per student 3.207***
(0.883)

-1.419
(1.043)

East coast University 2.301***
(0.469)

2.261***
(0.869)

West coast University 1.711***
(0.608)

0.839
(1.053)

Constant 35.78***
(5.975)

32.59***
(6.637)

Author fixed effects No Yes

Year fixed effects Yes Yes

Field fixed effects Yes Yes

R2 0.092 0.041

Observations 37,320 37,320

Number of authors 9,121

Table 23 Effect of individual variables on mathematician’s output, by IF

Dependent variable (1)
Author impact

(2)
Author impact

(3)
Author impact

Nb. of coauthors -4.737***
(0.0759)

-5.125***
(0.104)

-4.749***
(0.0758)

Nb. coauthors diff specialty 2.161***
(0.220)

3.506***
(0.239)

2.120***
(0.220)

Nb. past moves 1.290***
(0.126)

0.878***
(0.165)

1.461***
(0.126)

pdisc 0.754***
(0.183)

0.0884
(0.278)

0.815***
(0.183)

Nb. of past MSC codes 0.695***
(0.157)

0.783***
(0.232)

0.777***
(0.157)

Nb. of past coauthors 0.997***
(0.0815)

0.483***
(0.0792)

1.019***
(0.0812)
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Table 23 continued

Dependent variable (1)
Author impact

(2)
Author impact

(3)
Author impact

Constant 14.10***
(0.592)

17.38***
(1.194)

17.81***
(0.740)

Author fixed effect No Yes No

Year fixed effects Yes Yes Yes

Field fixed effects Yes Yes Yes

3 Year cohort effects No No Yes

R2 0.134 0.049 0.137

Observations 108,447 108,447 108,447

Number of authors 44,875

Table 24 Journals in the database, A–Z

Journal Mean

Total pages Nb. articles M.C.Q. Pages Nb. authors

ACHA 15,953 819 0.83 19.48 2.50

ACMMS 12,581 756 0.49 16.64 2.5

Acta 23,678 585 2.14 40.48 2.09

AdvApplProba 43,739 2,360 0.36 18.53 2.07

AdvCompMath 20,798 961 0.63 21.64 2.35

Advances 94,806 2,711 1.04 34.97 2.06

AJM 48,824 1,691 1.03 28.87 1.89

AnnApplProba 45,783 1,790 0.81 25.58 2.22

AnnProba 79,936 3,396 0.89 23.54 1.99

AnnStat 87,197 4,140 0.75 21.06 2.03

Annals 63,255 1,605 1.98 39.41 1.98

Arkiv 12,884 710 0.64 18.15 1.79

ASENS 27,757 846 1.19 32.81 1.78

BAMS 13,372 1,044 2.03 12.81 1.97

Bernoulli 19,542 915 0.40 21.36 2.23

Biometrika 36,867 3,622 0.38 10.18 2.16

CMH 26,054 1,285 0.92 20.28 1.90

CombProbaComput 16,808 1,127 0.34 14.91 2.31

Combinatorica 23,545 1,654 0.44 14.24 2.31

CommPDE 69,948 2,495 0.94 28.04 1.90

Compositio 52,333 2,233 0.76 23.44 1.76

ComputComp 10,917 470 0.33 23.23 2.84

Constr 22,313 1,115 0.71 20.01 2.12

CPAM 59,562 1,844 1.67 32.30 2.18

Crelle 89,626 3,568 0.91 25.12 1.85

DCDS 34,491 2,249 0.40 15.34 2.21

DCG 38,155 2,291 0.50 16.65 2.44

Duke 91,063 3,093 1.38 29.44 1.93
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Table 24 continued

Journal Mean

Total pages Nb. articles M.C.Q. Pages Nb. authors

DynSys 4,707 232 0.33 20.29 2.31

Econometrica 42,090 1,832 0.70 22.97 2.04

ElecJComb 22,490 1,613 0.44 13.94 2.20

ElectrCommunProba 3,201 331 0.63 9.67 2.03

ElectronJProba 14,833 500 0.55 29.67 2.25

Expo 12,656 674 0.44 18.78 1.68

FinancStoch 8,686 419 0.78 20.73 2.29

GAFA 29,987 960 1.17 31.24 1.97

GeoTopo 16,950 461 1.28 36.77 1.95

IHES 16,881 330 2.71 51.15 2.02

IhpProba 26,998 1,145 0.69 23.58 2.01

IhpAN 29,750 1,130 1.26 26.33 2.10

IMAJNA 27,521 1,401 0.63 19.64 2.17

Indiana 54,789 2,254 0.91 24.31 2.02

InfinDimAnal 10,403 561 0.62 18.54 2.15

Inventiones 93,613 3,220 1.94 29.07 1.87

Inverse 54,049 3,569 0.81 15.14 2.42

Irmn 41,359 1,978 0.95 20.91 1.95

JAmStatAssoc 44,051 4,339 0.47 10.15 2.37

JCombThA 49,950 3,414 0.54 14.63 2.11

JCombThB 38,601 2,501 0.63 15.43 2.26

JGeomPhys 45,937 2,209 0.38 20.80 2.19

JRStatSocB 17,309 947 0.59 18.28 2.52

JStatPlan 95,233 6,402 0.28 14.88 2.18

JTheorProba 28,841 1,392 0.38 20.72 1.95

JAG 17,880 655 0.78 27.30 1.83

JAMS 34,388 1,000 2.54 34.39 2.11

JCryptol 10,009 475 0.36 21.07 2.56

JDE 14,9292 5,822 0.91 25.64 2.03

JDG 52,365 1,632 1.19 32.09 1.82

JEMS 6,895 230 1.42 29.98 2.25

JFA 161,178 5,732 0.97 28.12 2.08

JLMS 5,0910 3,667 0.65 13.88 1.94

JMAA 268,584 17,941 0.47 14.97 2.05

JMPA 36,215 1,255 1.03 28.86 2.18

JNLS 18,661 637 0.75 29.30 2.44

MAMS 107,327 984 1.58 109.07 2.11

MathAnn 82,398 4,237 0.96 19.45 1.81

MathComput 69,607 4,263 0.68 16.33 2.12

MathProg 72,525 3,659 0.65 19.82 2.32

MathZ 75,035 4,401 0.62 17.05 1.80
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Appendix 2: results based on the Impact factor

The data presented in this section are similar to those obtained in other parts of the paper.

However, the basic indicators are based on the IF rather than on MCQ. More precisely, the

weight attributed to each article is equal to the number of its pages times the IF of the

journal where it is published, rather than the square of the MCQ.

Table 19 is the analog of Table 8.

Similarly, we have the analog of Table 9 in Table 20 with the impact of authors based

on the IF.

We now consider the factors playing a part in a mathematician’s scientific productivity.

Table 21 is the analog of Table 10 based on the IF rather than the MCQ.

The analog of Table 11 with the impact of authors based on the IF is in Table 22 .

Finally, Table 23 is the analog of Table 7 based on the IF.

Table 24 continued

Journal Mean

Total pages Nb. articles M.C.Q. Pages Nb. authors

MRL 18,007 1,503 0.75 11.98 1.98

Nonlinearity 62,933 3,168 0.55 19.87 2.33

NumLinAlgA 17,725 1,000 0.39 17.73 2.49

NumerMath 77,775 3,603 0.75 21.59 2.20

PTRF 64,525 2,709 0.92 23.82 1.94

PhysicaD 130,332 7,418 0.33 17.57 2.64

PLMS 53,111 1,892 0.99 28.07 2.01

PublMath 15,861 906 0.41 17.51 1.83

QJM 18,410 1,319 0.54 13.96 1.91

Random 27,551 1,343 0.57 20.51 2.38

RMIbero 23,016 771 0.71 29.85 2.04

ScandJStat 20,070 1,327 0.29 15.12 2.10

SiamCO 80,559 3,795 0.71 21.23 2.14

SiamJAM 89,115 4,291 0.49 20.77 2.41

SiamJC 80,871 4,130 0.40 19.58 2.71

SiamJMAA 44,987 2,737 0.67 16.44 2.33

SiamJSC 65,780 3,299 0.61 19.94 2.57

SiamMA 69,467 3,636 0.91 19.11 2.08

SiamNA 93,630 4,513 0.79 20.75 2.27

SiamOpti 38,298 1,897 1.08 20.19 2.42

SiamRev 22,594 1,008 1.01 22.41 2.18

SochProcAppl 61,820 3,320 0.57 18.62 1.98

StatSci 11,825 605 0.23 19.55 2.13

StatSinica 29,945 1,711 0.23 17.50 2.33

StudAM 31,616 1,287 0.31 24.57 2.22

TAMS 187,528 8,770 0.83 21.38 1.93

Topology 34,157 1,732 0.82 19.72 1.85

Total 85,963 4,584 0.74 20.83 2.13
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Appendix 3: more on the data

Table 24 contain the list of journals used here. With each journal we list the total number

of pages published in the sample period, the number of articles, the 2007 M.C.Q., the mean

number of pages by article, and the mean number of authors by article. The code used for

each journal (in the first column) should make it easy, for those who are familiar with the

mathematical literature, to identify each journal.

References

Adler, R., Ewing, J., & Taylor, P. (2009). Citation statistics: A report from the international mathematical
union (IMU) in cooperation with the international council of industrial and applied mathematics
(ICIAM) and the Institute of Mathematical Statistics (IMS). Statistical Science, 24, 1–14. http://dx.doi.
org/10.1214/09-STS285.

Agrawal, A., & Goldfarb, A. (2008). Restructuring research: Communication costs and the democratization
of university innovation. American Economic Review, 98, 1578–1590.

Borjas, G. J., & Doran, K. B. (2012). The collapse of the soviet union and the productivity of american
mathematicians. Technical report, National Bureau of Economic Research.

Combes, P. P., & Linnemer, L. (2003). Where are the economists who publish? Publication concentration
and rankings in Europe based on cumulative publications. Journal of the European Economic Asso-
ciation, 1, 1250–1308.
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